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Abstract

Noncommutative Projective Schemes were introduced by Michael Artin and J.J.

Zhang in their 1994 paper of the same name as a generalization of projective schemes

to the setting of not necessarily commutative algebras over a commutative ring. In

this work, we study the derived category of quasi-coherent sheaves associated to

a noncommutative projective scheme with a primary emphasis on the triangulated

equivalences between two such categories.

We adapt Artin and Zhang’s noncommutative projective schemes for the lan-

guage of differential graded categories and work in Ho (dgcatk), the homotopy cate-

gory of differential graded categories, making extensive use of Bertrand Toën’s De-

rived Morita Theory. For two noncommutative projective schemes, X and Y , we

associate differential graded enhancements, D(X) and D(Y ), of the respective de-

rived categories of quasi-coherent sheaves. Under appropriate cohomological con-

ditions, we provide a noncommutative geometric description of the subcategory,

RHomc(D(X),D(Y )), of the internal Hom category in Ho (dgcatk). As an imme-

diate application, we show that, under these conditions, any triangulated equivalence

between the derived categories induces an equivalence of Fourier-Mukai type, with

kernel an object of the derived category of quasi-coherent sheaves on the appropriate

analogue of the product.
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Preface

Derived Categories

Derived categories were initially conceived by Grothendieck as a device for main-

taining cohomological data during his reformulation of algebraic geometry through

scheme theory, and were fleshed out by his student, Verdier, in his thesis (Verdier

1996). While not immediately apparent, over time this object, originally devised as

a sort of book keeping device, has been recognized as the key to linking algebraic

geometry to a broad range of subjects both within and without mathematics. As

such, the study of derived categories has risen to prominence as a central subfield of

algebraic geometry. In particular, Bridgeland attributes this growth to three main

applications in his 2006 ICM address (Bridgeland 2006).

The first is the deep interrelationship between algebraic geometry and string the-

ory. In his 1994 ICM address (Kontsevich 1995), Kontsevich conjectures that duali-

ties seen in string theory should be expressed mathematically as a derived equivalence

between the Fukaya category and the category of coherent sheaves on a complex al-

gebraic variety. In the ensuing years, homological mirror symmetry has grown into a

mathematical subject in its own right. Indeed, the physical intuition which homolog-

ical mirror symmetry seeks to harness has already led to fruitful study of enumerative

problems in algebraic geometry (Candelas et al. 1991).

The second is the wealth of information maintained in the derived category which

has been hidden away from even modern geometric approaches. Work of Mukai

(1981); Mukai (1987) demonstrates that moduli spaces of sheaves on a variety can be

encoded in the derived category. Work of Bondal and Orlov (1995) shows how one can

vi
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attack birational geometry through the derived category, by encoding blow-ups, which

are foundational objects of birational geometry, as semi-orthogonal decompositions.

Moreover, much work in the direction of derived categories in algebraic geometry

have yielded fruitful classification results. Thanks to Orlov (1997), it is known that

over an algebraically closed field, curves are derived equivalent if and only if they are

isomorphic. In dimension two, for X smooth and projective, but not elliptic, K3, nor

abelian, it is known that derived equivalence implies isomorphism (Huybrechts 2006,

Prop. 12.1). In higher dimension, it was originally conjectured in Kawamata (2002)

that there are only finitely many derived equivalent surfaces up to isomorphism. In

Anel and Toën (2009) it was shown that there are at most countably many varieties

in the derived equivalence class, while the original conjecture is shown to be false in

Lesieutre (2015).

Of central importance in each of the situations above are the so-called kernels of

Fourier-Mukai transforms. For smooth projective varieties, X and Y , the kernels are

objects in the derived category of X×kY which induce an equivalence of their respec-

tive derived categories, this equivalence being called a Fourier-Mukai transform. The

main theorem of Orlov (1997) is that equivalences of derived categories of smooth

projective varieties arise from these kernels. The spectacular advantage of having

kernels is the translation of an equivalence of derived categories, which is intrinsically

cohomological data at the level of triangulated categories, to geometric data encoded

by the kernel. The potency of this relationship is borne out by tying the minimal

model program of birational geometry to semi-orthogonal decompositions of the de-

rived category in Bridgeland (2002); Kawamata (2002) and the notion of Bridgeland

stability in Bridgeland (2007); Arcara et al. (2013); Bayer and Macrì (2014a); Bayer

and Macrì (2014b), which demonstrate the mixture of derived categories, moduli

spaces, and birational geometry.
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The final point, and the main topic of this work, is that the methods of derived

categories may yet serve as the dictionary between the methods of projective algebraic

geometry and the study of noncommutative algebra. While a direct generalization of

schemes to noncommutative rings is, in some sense, highly pathological, one does have

a good notion of quasi-coherent and coherent sheaves. The success in the commutative

case to express geometric phenomena through the derived category of coherent sheaves

suggests that the noncommutative analogue should serve as a bridge between these

worlds.

Noncommutative Projective Schemes

The deep interrelationship between commutative algebra and algebraic geometry has

been well known for quite some time. More recently, in an effort to understand

the world of noncommutative algebra, Artin and Zhang (1994) introduced Noncom-

mutative Projective Schemes as the noncommutative analogues of geometric objects

associated to graded rings. This work stems largely from Artin and Schelter (1987)

in which an attempt at classifying the noncommutative analogues of P2 was made.

In the commutative situation, one associates to a graded ring, A, the scheme

X = ProjA, the projective spectrum, along with the categories QcohX of quasi-

coherent sheaves and cohX of coherent sheaves. Analogously, to a noncommutative

graded algebra, A, over a commutative ring, k, one associates the category QGrA,

declared to be the category of quasi-coherent sheaves. This category is obtained as the

quotient of the category, GrA, of graded modules by the Serre subcategory of torsion

graded modules, TorsA, in the sense of Gabriel (1962). While these schemes do not,

in general, admit a space on which to do geometry, they do provide what are arguably

the fundamental objects of study in modern algebraic geometry: the quasi-coherent

sheaves and its full noetherian subcategory, qgrA, of coherent sheaves. The precise

justification for this definition rests on the following famous theorem of Serre: If A is

viii
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a commutative graded ring generated in degree one, the category of quasi-coherent

sheaves on ProjA is equivalent to the quotient category, QGrA, and the category of

coherent sheaves on ProjA is equivalent to its full noetherian subcategory, qgrA.

Of late, much work has been done on the classification of noncommutative varieties

of low dimension. The tools of birational geometry and moduli spaces from projective

algebraic geometry have been adapted to this noncommutative projective algebraic

geometry to great success. In dimension one, methods of noncommutative birational

geometry account for the classification of all noncommutative curves which is due

to Artin and Stafford (1995) and Reiten and Van den Bergh (2002). However, as

indicated in Stafford’s 2002 ICM address (Stafford 2002), the question of classifying

noncommutative surfaces remains open. In Artin (1997), Artin conjectured that, up

to birational equivalence, there are four types of surfaces. Towards this end, partial

classification results for noncommutative surfaces have been given in Artin, Tate,

and Van den Bergh (1990); Stephenson (1996); Stephenson (1997) using methods of

moduli spaces.

The guiding principle set forth by Artin and Zhang is that our understanding of

projective algebraic geometry should drive our intuition in the study of noncommu-

tative algebra. Indeed, the recent results above have been largely due to adaptations

of some of these methods and, given the significant advances in the commutative set-

ting, one should expect that derived categories will play a leading role in this study.

However, conspicuously absent from this accounting are any such developments. As

was the case in the commutative setting, the primary stumbling block appears in

large part to be the absence of Fourier-Mukai kernels. Having such a statement for

the case of noncommutative projective schemes therefore seems of high priority.
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Chapter 1

Introduction

Fourier-Mukai Kernels for Noncommutative Projective Schemes

In light of their absense in noncommutative projective geometry, the natural question

to ask is what these kernels should be. Toën’s derived Morita theory (Toën 2007)

gives an overarching framework to attack such a problem by abstracting to the higher

categorical structure of differential graded (dg) categories. Working within the ho-

motopy category of the 2-category of all small dg-categories over a commutative ring,

Toën is able to provide an incredibly elegant reformulation of Fourier-Mukai functors

at the level of pre-triangulated dg-categories via the dg-subcategory, RHomc, of the

internal Hom. Indeed, using this machinery, kernels have been recovered for schemes

in Toën (2007), and obtained for higher derived stacks in Ben-Zvi, Francis, and Nadler

(2010) and for categories of matrix factorizations in Dyckerhoff (2011); Polishchuk

and Vaintrob (2012); Ballard, Favero, and Katzarkov (2014). In each case, the work

lies in the identification of the internal Hom object obtained from this machinery

within the theory from which the input dg-categories originate, for even if they arise

geometrically, the resulting Hom is often quite abstract.

The obvious first step in such work is to identify the possible input dg-categories

for the machinery of derived Morita theory. In the situation of interest, one considers

the noncommutative projective scheme, QGrA, associated to the connected graded

algebra, A, over a field, k. The natural choice of dg-category is the dg-enhancement,

D(QGrA), of the derived category D(QGrA), in the sense of Lunts and Orlov (2010),

1
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which is unique up to equivalence in the homotopy category of dg-categories. One

must then identify the dg-category RHomc(D(QGrA),D(QGrB)) noncommutative

geometrically.

Generally, care must be taken to ensure good behavior of QGrA, but one may

exert some control by imposing cohomological conditions on the ring, A. Two such

common conditions are the Ext-finite condition of Bondal and Van den Bergh (2003)

and the condition χ◦(M) of Artin and Zhang (1994). One can interpret these con-

ditions geometrically as imposing Serre vanishing for the noncommutative twisting

sheaves together with a local finite dimensionality over the ground field, k. Specifi-

cally, one can force good behavior with respect to Toën’s derived Morita theory by

requiring that two connected graded algebras, A and B, over a field, k, are both left

and right Noetherian, Ext-finite, and satisfy the condition χ◦(M) for the left/right

A-modules M = A,Aop, and the left/right B-modules M = B,Bop. We call such a

pair of algebras a delightful couple.

In this work we establish the identification

RHomc(D(QGrA),D(QGrB)) ∼= D(QGr(Aop ⊗k B))

in the homotopy category of dg-categories under these hypotheses.

As an easy corollary of the main result, one has the following statement.

Theorem 1.0.1. Let X and Y be noncommutative projective schemes associated to a

delightful couple over a field k, both of which are generated in degree one. Then for any

equivalence D(QcohX) → D(Qcoh Y ), there exists an object P of D(QcohX ×k Y )

whose associated integral transform is an equivalence of Fourier-Mukai type.

The interested reader can see Corollary 5.4.3 for a more careful statement of this

result.

2
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Conventions

The ring k will always be at least Noetherian and commutative, though often will be

a field. Often, for ease of notation, C(X, Y ) will be used to refer to the morphims,

HomC(X, Y ), between objects X and Y of a category C, though we shall also use an

undecorated Hom depending on the complexity of the notation, provided the meaning

is clear from context. Whenever C has a natural enrichment over a category, V , we

will denote by C(X, Y ) the V-object of morphisms.

For example, the category of complexes of k-vector spaces, C (k), can be endowed

with the the structure of a C (k)-enriched category using the hom total complex,

C (k) (C,D) := C(k)(C,D)

which has in degree n the k-vector space

C (k) (C,D)n =
∏
m∈Z

Mod k
(
Cm, Dm+n

)

and differential

d(f) = dD ◦ f + (−1)n+1f ◦ dC .

It should be noted that Z0(C (k) (C,D)) = C (k) (C,D).

3
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Chapter 2

Differential Graded Categories

In this chapter we recall some basic facts about differential graded (dg) categories.

For a more detailed treatment of dg-categories, see, e.g., Keller (1994); Keller (2006);

Drinfeld (2004). For a detailed treatment of enriched categories, see, e.g., Borceux

(1994, Chapter 6).

Recall that a dg-category, A, over k is a category enriched over the category

of chain complexes, C (k), a dg-functor, F : A → B is a C (k)-enriched functor, a

morphism of dg-functors of degree n, η : F → G, is a C (k)-enriched natural

transformation such that η(A) ∈ B (FA,GA)n for all objects A of A, and a mor-

phism of dg-functors is a degree zero, closed morphism of dg-functors. We will de-

note by dgcatk the 2-category of small C (k)-enriched categories, and by dgcat
k
(A,B)

the dg-category of dg-functors from A to B.

Recall also that for A and B small dg categories, we may define a dg-category

A⊗ B with objects ob(A)× ob(B) and morphisms

(A⊗ B) ((X, Y ), (X ′, Y ′)) = A(X,X ′)⊗k B(Y, Y ′).

It is well known that there is an isomorphism

dgcatk(A⊗ B, C) ∼= dgcatk(A, dgcat
k
(B, C)),

endowing dgcatk with the structure of a symmetric monoidal closed category.

For any dg-category, A, we denote by Z0(A) the category with objects those of

A and morphisms

Z0(A)(A1, A2) := Z0(A(A1, A2)).

4
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By H0(A) we denote the category with objects those of A and morphisms

H0(A)(A1, A2) := H0(A(A1, A2)).

Following Canonaco and Stellari (2015), we say that two objects A1, A2 of a dg-

category, A, are dg-isomorphic (respectively, homotopy equivalent) if there

is a morphism f ∈ Z0(A)(A1, A2) such that f (respectively, the image of f in

H0(A)(A1, A2)) is an isomorphism. In such a case, we say that f is a dg-

isomorphism (respectively, homotopy equivalence).

2.1 The Model Structure on DG-Categories

We collect here some basic results on the model structure for dgcatk. Our standard

reference for model categories in general is Hovey (1999).

For any dg-functor F : A → B, we say that F is

(i) quasi-fully faithful if for any two objects A1, A2 of A the morphism

F (A1, A2) : A(A1,A2)→ B(FA1, FA2)

is a quasi-isomorphism of chain complexes,

(ii) quasi-essentially surjective if the induced functor H0(F ) : H0(A) → H0(B)

is essentially surjective,

(iii) a quasi-equivalence if F is quasi-fully faithful and quasi-essentially surjective,

(iv) a fibration if F satisfies the following two conditions:

(a) for all objects A1, A2 of A, the morphism F (A1, A2) is a degree-wise surjec-

tive morphism of complexes, and

(b) for any object A of A and any isomorphism η ∈ H0(B)(H0(F )A,B), there

exists an isomorphism ν ∈ H0(C)(A,A′) such that H0(F )(ν) = η.

5
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In Tabuada (2005) it is shown that taking the class of fibrations defined above and the

class of weak equivalences to be the quasi-equivalences, dgcatk becomes a cofibrantly

generated model category. The localization of dgcatk at the class of quasi-equivalences

is the homotopy category, Ho (dgcatk). We will denote by [A,B] the morphisms of

Ho (dgcatk).

A small dg-category A is said to be h-projective if for all objects A1, A2 of

A and any acyclic complex, C, every morphism of complexes A(A1, A2) → C is

null-homotopic. In Canonaco and Stellari (2015), it is shown that there exists an

h-projective category, Ahp, quasi-equivalent to A and, as a result, the localization

of the full subcategory of dgcatk of h-projective dg-categories at the class of quasi-

equivalences is equivalent to Ho (dgcatk). In particular, when k is a field, every

dg-category is h-projective and hence one can compute the derived tensor product by

A⊗L B = Ahp ⊗ B = A⊗ B.

We will make extensive use of this fact throughout.

2.2 Differential Graded Modules

Before making the relevant definitions, we pause for a brief justification of the use of

the word module. To a ring A, one can associate the Ab-enriched category, A, with

one object, endomorphisms the abelian group A, and composition given by multipli-

cation. We will refer to the category A as the ringoid associated to A. As one is

wont to do in mathematics, we shift perspective by invoking enriched category the-

ory and abstract away to the 2-category, Ab-cat, of all small Ab-enriched categories.

Indeed, it is an easy exercise in translation that one recovers the classical category of

A-modules as the Ab-enriched category of Ab-enriched functors, Ab-cat(A,Ab).

More generally, for any Ab-enriched category, A, one could reasonably call

Ab-cat(A,Ab) the category of Ab-modules over A; the classical A-modules could

6
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then be regarded as Ab-modules over the ringoid A. Since these constructions really

only rely on the fact that Ab is a symmetric monoidal closed category, one is natu-

rally led to think about mimicking this construction with another category, V , of the

same type. This of course leads to V-modules over a V-category, A. As dg-categories

are just V-enriched categories for V = C (k), we adopt the name dg-module.

For any small dg-category, A, denote

dgMod (A) := dgcat
k

(Aop, C (k)) ,

the dg-category of dg-functors, where C (k) denotes the dg-category of chain com-

plexes equipped with the internal Hom from its symmetric monoidal closed structure.

The objects of dgMod (A) will be called dg A-modules. Since one may view the dg

Aop-modules as what should reasonably be called left dg A-modules, the terms right

and left will be dropped in favor of dg A-modules and dg Aop-modules, respectively.

We note here that the somewhat vexing choice of terminology is such that we can

view objects of A as dg A-modules by way of the enriched Yoneda embedding

YA : A → dgMod (A) .

Just as one usually calls an abelian group with compatible left A-action and

right B-action an A-B-module, we define for any two small dg-categories, A and

B, the category of dg A-B-bimodules to be dgMod (Aop ⊗ B). We note here that

the symmetric monoidal closed structure on dgcatk allows us to view bimodules as

morphisms of dg-categories by the isomorphism

dgMod (Aop ⊗ B) = dgcat
k

(A⊗ Bop, C (k))

∼= dgcat
k
(A, dgcat

k
(Bop, C (k)))

= dgcat
k

(A, dgMod (B)) .

The image of a dg A-B-bimodule, E, is the dg-functor ΦE(A) = E(A,−).

7
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As a final note, we draw a connection between chain complexes and dg-modules

over a ringoid that parallels the discussion of A-modules and the so-called Ab-modules

above. Let A be a k-algebra and consider the category of chain complexes, C (A).

One can construct (see, e.g., Weibel (1994)) for any two chain complexes a chain

complex of morphisms

C (A) (C,D)n =
∏
m∈Z

ModA
(
Cm, Dm+n

)
with differential given by

d(f) = dD ◦ f + (−1)n+1f ◦ dC .

Denoting by C (A) the category with objects chain complexes of A-modules and mor-

phisms given by this complex, a similar translation shows that this is equivalent to

the dg-category dgMod (A).

2.3 h-Projective DG-Modules

We say that a dg A-module, N , is acyclic if N(A) is an acyclic chain complex for

all objects A of A. A dg A-module, M , is said to be h-projective if

H0(dgMod (A))(M,N) := H0(dgMod (A) (M,N)) = 0

for every acyclic dg A-module, N . The full dg-subcategory of dgMod (A) consisting

of h-projectives will be called h-proj (A).

We always have a special class of h-projectives given by the representables, which

we denote hA = A(−, A), for if M is acyclic, then from the enriched Yoneda Lemma

we have

H0(dgMod (A))(hA,M) := H0(dgMod (A) (hA,M)) ∼= H0(M(A)) = 0.

Noting that closure of h-proj (A) under homotopy equivalence follows immediately

from the Yoneda Lemma applied to H0(dgMod (A)), we define A to be the full dg-

8



www.manaraa.com

subcategory of h-proj (A) consisting of the dg A-modules homotopy equivalent to

representables.

We will say an h-projective dg A-B-bimodule, E, is right quasi-representable

if for every object A of A the dg B-module ΦE(A) is an object of B, and we will

denote by h-proj (Aop ⊗ B)rqr the full subcategory of h-proj (Aop ⊗ B) consisting of

all right quasi-representables.

2.4 The Derived Category of a DG-Category

By definition, a degree zero closed morphism

η ∈ Z0(dgMod (A))(M,N)

satisfies

η(A) ∈ Z0(C (k) (M(A), N(A))) = C (k) (M(A), N(A))

for all objects A of A. Hence we are justified in the following definitions:

(i) η is a quasi-isomorphism if η(A) is a quasi-isomorphism of chain complexes

for all objects A of A, and

(ii) η is a fibration if η(A) is a degree-wise surjective morphism of complexes for

all objects A of A.

Equipping C (k) with the standard projective model structure (Hovey 1999, Section

2.3), these definitions endow Z0(dgMod (A)) with the structure of a particularly nice

cofibrantly generated model category (Toën 2007, Section 3). In analogy with the

definition of the derived category of modules for a ring A, the derived category of

A is defined to be the model category theoretic homotopy category,

D(A) = Ho
(
Z0(dgMod (A))

)
= Z0(dgMod (A))[W−1]

obtained from localizing Z0(dgMod (A)) at the class, W , of quasi-isomorphisms.

9
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It can be shown (Keller 1994, Section 3.5) that for every dg A-module, M , there

exists an h-projective, N , and a quasi-isomorphism N → M , which one calls an

h-projective resolution of M . Moreover, it is not difficult to see that any quasi-

isomorphism between h-projective objects is in fact a homotopy equivalence. It follows

that there is an equivalence of categories between H0(h-proj (A)) and D(A) for any

small dg-category, A.

It should be noted that this generalizes the notion of derived categories of mod-

ules over a k-algebra, A. Making the identification of C (A) and dgMod (A) as at

the end of Section 2.2, where A is the ringoid associated to A, it is easy to recognize

the categories Z0(dgMod (A)), H0(dgMod (A)), and D(A), as the categories C (A),

K(A), the usual category up to homotopy, and the derived category of ModA, respec-

tively. In the language of Lunts and Orlov (2010), h-proj (A) is a dg-enhancement of

D(ModA).

2.5 Tensor Products of DG-Modules

Let M be a dg A-module, let N be a dg Aop-module, and let A,B be objects of A.

For ease of notation, we drop the functor notation M(A) in favor of MA and write

AA,B for the morphisms A(A,B). We have structure morphisms

MA,B ∈ C (k) (AA,B, C (k) (MB,MA)) ∼= C (k) (MB ⊗k AA,B,MA)

and

NA,B ∈ C (k) (AA,B, C (k) (NA, NB)) ∼= C (k) (AA,B ⊗k NA, NB) ,

which give rise to a unique morphism

MB ⊗k AA,B ⊗k NA →MA ⊗k NA ⊕MB ⊗k NB

10
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induced by the universal properties of the biproduct. The two collections of mor-

phisms given by projecting onto each factor induce morphisms

Ξ1,Ξ2 :
⊕

A,B∈Ob(A)
MB ⊗k AA,B ⊗k NA →

⊕
C∈Ob(A)

MC ⊗k NC ,

and we define the tensor product of M and N to be the coequalizer in C (k)

⊕
(i,j)∈Z2 Mj ⊗k AA,B ⊗k NA

⊕
`∈ZM` ⊗k N` M ⊗A N

Ξ1

Ξ2
.

It is routine to check that a morphism M → M ′ of right dg A-modules induces by

the universal property for coequalizers a unique morphism

M ⊗A N →M ′ ⊗A N

yielding a functor

−⊗A N : dgMod (A)→ C (k) .

One extends this construction to bimodules as follows. Given objects E of

dgMod (A⊗ B) and F of dgMod (Bop ⊗ C), we recall that we have associated to each

a dg-functor

ΦE : Aop → dgMod (B) and ΦF : Cop → dgMod (Bop)

by the symmetric monoidal closed structure on dgcatk. For each pair of objects A of

A and C of C, we obtain dg-modules

ΦE(A) = E(A,−) : Bop → C (k) and ΦF (C) = F (−, C) : B → C (k)

and hence one may define the object E ⊗B F of dgMod (A⊗ C) by

(E ⊗B F ) (A,C) = ΦE(A)⊗B ΦF (C).

One can show that by a similar argument to the original that a morphism E → E ′

of dgMod (A⊗ B) induces a morphism E ⊗B F → E ′ ⊗B F of dgMod (A⊗ C), and a

morphism F → F ′ of dgMod (Bop ⊗ C) induces a morphism E ⊗B F → E ⊗B F ′ of

dgMod (A⊗ C).

11
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Remark 2.5.1. Denote by K the dg-category with one object, ∗, and morphisms

given by the chain complex

K(∗, ∗)n =


k n = 0

0 n 6= 0

with zero differential. This category serves as the unit of the symmetric monoidal

structure on dgcatk, so for small dg-categories, A and C, we can always identify A

with A ⊗ K and C with Kop ⊗ C. With this identification in hand, we obtain from

taking B = K in the latter construction a special case: Given a dg Aop-module, E,

and a dg C-module, F , we have a dg A-C-bimodule defined by the tensor product

(E ⊗ F ) (A,C) := (E ⊗K F ) (A,C) = E(A)⊗k F (C).

2.6 Bimodules as Morphisms of Module Categories

Let E be a dg A-B-bimodule. Following Canonaco and Stellari (2015, Section 3), we

can extend the associated functor ΦE to a dg-functor

Φ̂E : dgMod (A)→ dgMod (B)

defined by Φ̂E(M) = M ⊗A E. Similarly, we have a dg-functor in the opposite

direction

Φ̃E : dgMod (B)→ dgMod (A)

defined by Φ̃E(N) = dgMod (B) (ΦE(−), N).

For any dg-functor G : A → B we denote by IndG the extension of the dg-functor

A B dgMod (B)YB

and its right adjoint by ResG. By way of the enriched Yoneda Lemma we see that for

any object A of A and any dg B-module, N ,

ResG(N)(A) = dgMod (B) (hGA, N) ∼= N(GA).

We record here some useful propositions regarding extensions of dg-functors.

12
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Proposition 2.6.1 (Canonaco and Stellari (2015, Prop 3.2)). Let A and B be small

dg-categories. Let F : A → dgMod (B) and G : A → B be dg-functors.

(i) F̂ is left adjoint to F̃ (hence IndG is left adjoint to ResG),

(ii) F̂ ◦ YA is dg-isomorphic to F and H0(F̂ ) is continuous (hence IndG ◦YA is dg-

isomorphic to YB ◦G and H0(IndG) is continuous),

(iii) F̂ (h-proj (A)) ⊆ h-proj (B) if and only if F (A) ⊆ h-proj (B) (hence the essential

image of h-proj (A) under IndG lies in h-proj (B)),

(iv) ResG(h-proj (B)) ⊆ h-proj (A) if and only if ResG(B̄) ⊆ h-proj (A); moreover,

H0(ResG) is always continuous,

(v) IndG : h-proj (A)→ h-proj (B) is a quasi-equivalence if G is a quasi-equivalence.

Remark 2.6.2. 1. We note that for dg A- and Aop-modules, M and N , part (i)

implies that the dg-functors

−⊗A N : dgMod (A)→ C (k) and M ⊗A − : dgMod (Aop)→ C (k)

have right adjoints

Ñ(C) = C (k) (N(−), C) and M̃(C) = C (k) (M(−), C),

respectively. As an immediate consequence of the enriched Yoneda Lemma

hA ⊗A N ∼= N(A) and M ⊗A hA ∼= M(A)

holds for any object A of A.

2. We denote by ∆A the dg A-A-bimodule corresponding to the Yoneda embed-

ding, YA, under the isomorphism

dgMod (Aop ⊗A) ∼= dgcat
k

(A, dgMod (A)) .

13
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It’s clear that we have a dg-functor

∆A ⊗A − : dgMod (Aop ⊗A)→ dgMod (Aop ⊗A)

and for any dg A-A-bimodule, E, we see that

(∆A ⊗A E)(A,A′) = hA ⊗A E(−, A′) ∼= E(A,A′)

implies that ∆A ⊗A E ∼= E.

When starting with an h-projective we have a very nice extension of dg-functors:

Proposition 2.6.3 (Canonaco and Stellari (2015, Lemma 3.4)). For any h-projective

dg A-B-bimodule, E, the extension of the associated functor

ΦE : A → dgMod (B)

factors through h-proj (B).

As a direct consequence of the penultimate proposition, one can view the extension

of ΦE as a dg-functor

Φ̂E = −⊗A E : h-proj (A)→ h-proj (B) .

That is to say, tensoring with an h-projective A-B-bimodule preserves h-projectives.

One essential result about dgcatk comes from Töen’s result on the existence, and

description of, the internal Hom in its homotopy category.

Theorem 2.6.4 (Toën (2007, Thm 1.1), Canonaco and Stellari (2015, Section 4)).

Let A, B, and C be objects of dgcatk. There exists a natural bijection

[A, C] 1:1←→ Iso
(
H0(h-proj (Aop ⊗ C)rqr)

)
Moreover, the dg-category RHom (B, C) := h-proj (Bop ⊗ C)rqr yields a natural bijec-

tion

[A⊗ B, C] 1:1←→ [A,RHom (B, C)]

proving that the symmetric monoidal category Ho (dgcatk) is closed.

14
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Corollary 2.6.5 (Toën (2007, Thm 7.2),Canonaco and Stellari (2015, Cor. 4.2)).

Given two dg categories A and B, RHom (A, h-proj (B)) and h-proj (Aop ⊗ B) are

isomorphic in Ho (dgcatk). Moreover, there exists a quasi-equivalence

RHomc (h-proj (A) , h-proj (B))→ RHom (A, h-proj (B)) .

To get a sense of the value of this result, let us recall one application from Toën

(2007, Section 8.3). Let X and Y be quasi-compact and separated schemes over

Spec k. Recall the dg-model for D(QcohX), Lqcoh(X), is the C(k)-enriched subcate-

gory of fibrant and cofibrant objects in the injective model structure on C(QcohX).

Theorem 2.6.6 (Toën (2007, Thm. 8.3)). Let X and Y be quasi-compact, quasi-

separated schemes over k. Then there exists an isomorphism in Ho (dgcatk)

RHomc (LqcohX,LqcohY ) ∼= Lqcoh(X ×k Y )

which takes a complex E ∈ Lqcoh(X ×k Y ) to the exact functor on the homotopy

categories

ΦE : D(QcohX)→ D(Qcoh Y )

M 7→ Rπ2∗

(
E

L
⊗ Lπ∗1M

)

Proof. The first part of the statement is exactly as in Toën (2007). The second part

is implicit.

2.7 Pretriangulated DG-Categories

In this section, we recall the definition of pretriangulated differential graded categories

and provide a useful tool for proving that a dg-functor is a quasi-equivalence.

Definition 2.7.1. We say that a dg-category, A, is pretriangulated if

(i) for all objects A of A and for all integers n there exists an object A[n] repre-

senting the functor hA[n], and
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(ii) for each morphism f ∈ Z0(A(A1, A2)) there exists an object cone(f) represent-

ing the pointwise cone functor

cone(f∗)(A) = cone
(
A(A,A1) f∗(A)→ A(A,A2)

)

In this case, the Yoneda embedding descends to a triangulated functor

H0(YA) : H0(A)→ H0(dgMod (A)).

The following result will prove remarkably useful throughout.

Lemma 2.7.2 (Schwede and Shipley (2003, Lemma 2.2.1)). Let D be a triangulated

category with coproducts and let K be a set of compact objects. Then the following

are equivalent:

(i) the smallest triangulated subcategory of D containing K that is closed under

coproducts is D itself,

(ii) An object D of D is trivial if and only if D(K,X[n]) = 0 for all objects K of K

and all integers n.

As a first application, we record a handy proposition. It is suspected that this is

well known, but satisfactory references in the literature seem difficult to find.

Proposition 2.7.3. Let A and B be pretriangulated dg-categories. Assume that

H0(A) and H0(B) each have a set of compact generators, {Ai}I and {Bj}J . If

F : A → B is a continuous dg-functor satisfying F ({Ai}I) = {Bj}J and the structure

morphism

FAi1 ,Ai2 : A(Ai1 , Ai2)→ B(FAi1 , FAi2)

is a quasi-isomorphism for all i1, i2 ∈ I, then F is a quasi-equivalence.

Proof. We observe that it suffices to show that F is quasi-fully faithful. Indeed, if F is

quasi-fully faithful, then the essential image of H0(A) under H0(F ) is a triangulated

16
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subcategory of H0(B) that is closed under coproducts and contains the generators

{Bj}J by assumption. Since H0(B) is the smallest such triangulated subcategory, it

follows that the essential image ofH0(A) is all ofH0(B) and thus F is quasi-essentially

surjective.

We break the argument into two pieces. The proof of each case is similar in style

to the proof that F is quasi-essentially surjective above. In the first case, we show

that the full dg-subcategory, C, of A consisting of objects C such that

FAi,C : A(Ai, C)→ B(FAi, FC)

is a quasi-isomorphism for all i ∈ I satisfies H0(C) = H0(A), so that, being a full

dg-subcategory of A with the same objects as H0(C), C = A. Having established

this, we obtain a non-trivial full dg-subcategory, D, of A consisting of objects D such

that

FD,X : A(D,X)→ B(FD,FX)

is a quasi-isomorphism for all objects X of A. Once again we show that the subcat-

egory H0(D) = H0(A). By the same argument, mutatis mutandis, this implies that

D = A and F is quasi-fully faithful.

Towards the first goal, we note that it suffices to show H0(C) is triangulated,

closed under coproducts, and contains {Ai}I . The latter condition is guaranteed by

hypothesis. That H0(C) is closed under translation follows from the pretriangulated

structure. Indeed, for any integer n, any i ∈ I, and any object C of C we have the

isomorphisms

H0(A(Ai, C[n])) ∼= H0(A(Ai, C)[n]) ∼= Hn(A(Ai, C))

and, similarly, H0(B(FAi, FC[n])) ∼= Hn(B(FAi, FC)). Now, for any distinguished

triangle C1 → C2 → X → C1[1] of H0(A) with C1, C2 objects of C we see that

X is an object of C by applying the Five Lemma to the morphism of long ex-

act sequences induced by the homological functors h0
Ai

(−) := H0(A)(Ai,−) and
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h0
FAi

(−) := H0(B)(FAi,−)

· · · h0
Ai

(C1) h0
Ai

(C2) h0
Ai

(X) h1
Ai

(C1) h1
Ai

(C2) · · ·

· · · h0
FAi

(FC1) h0
FAi

(FC2) h0
FAi

(FX) h1
FAi

(FC1) h1
FAi

(FC2) · · ·

H0(FAi,C1 ) H0(FAi,C2 ) H0(FAi,X) H1(FAi,C1 ) H1(FAi,C2 )

for each i ∈ I. Hence by equipping H0(C) with the distinguished triangles from

H0(A) of the form C1 → C2 → C3 → C1[1] with the Ci objects of C, H0(C) inherits

the structure of a triangulated subcategory. Finally we note that because Ai and

FAi ∈ {Bj}J are compact, and the induced functor H0(F ) commutes with direct

sums, we have for any set, {Cα}, of objects of C the isomorphism

H0
(
A
(
Ai,

⊕
α

Cα

))
∼=
⊕
α

H0 (A (Ai, Cα)) ∼=
⊕
α

H0 (B (FAi, Cα))

∼= H0
(
B
(
FAi,

⊕
α

FCα

))
∼= H0

(
B
(
FAi, F

(⊕
α

Cα

)))

implies that H0(C) is closed under coproducts.

To see that D = A, we again observe that it suffices to showH0(D) is triangulated,

closed under coproducts, and contains the generators, {Ai}I . The latter condition

follows from the fact that the category C contains {Ai}I . For any object D of D and

any object X of A, the fact that translation is an auto-equivalence yields the natural

isomorphisms

A(D[n], X) ∼= A(D,X[−n]) and B(FD[n], FX) ∼= B(FD,FX[−n])

from which we obtain the isomorphism

H0(A(D[n], X)) ∼= H−n(A(D,X)) ∼= H−n(B(FD,FX)) ∼= H0(B(FD[n], FX))

for all n. Hence H0(D) is closed under translations. Next we see that for any set of

objects {Dα} of D and any object X of A we have the isomorphism

H0
(
A
(⊕

α

Dα, X

))
∼=
∏
α

H0 (A (Dα, X)) ∼=
∏
α

H0 (B (FDα, X))

∼= H0
(
B
(⊕

α

FDα, X

))
∼= H0

(
B
(
F

(⊕
α

Dα

)
, X

))
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which implies that H0(D) is closed under coproducts. Finally, for any distinguished

triangle D1 → D2 → Z → D1[1] of H0(A) with D1, D2 objects of D we see that

Z is an object of D by applying the Five Lemma to the morphism of long ex-

act sequences induced by the cohomological functors hX0 (−) := H0(A)(−, X) and

hFX0 (−) := H0(B)(−, FX)

· · · hX0 (D2) hX0 (D1) hX1 (Z) hX1 (D2) hX1 (D1) · · ·

· · · hFX0 (FDX) hFX0 (FD1) hFX1 (FZ) hFX1 (FD2) hFX1 (FD1) · · ·

H0(FD2,X) H0(FD1,X) H1(FZ,X) H1(FD2,X) H1(FD1,X)

for each i ∈ I. Hence by equipping H0(D) with the distinguished triangles

D1 → D2 → D3 → D1[1]

of H0(A), where the Di are objects of D, inherits the structure of a triangulated

subcategory. Therefore D = A and F is quasi-fully faithful, as desired.
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Chapter 3

Noncommutative Projective Schemes

Noncommutative projective schemes were introduced by Artin and Zhang (1994). In

this section, we recall some of the basic definitions and results, as well as conditions

that will appear in the sequel.

3.1 Graded Rings and Modules

Definition 3.1.1. Let G be a finitely-generated abelian group. We say that a k-

algebra, A, is G-graded if there exists a decomposition as k-modules

A =
⊕
g∈G

Ag

with AgAh ⊂ Ag+h. One says that A is connected graded if it is Z-graded with

A0 = k and An = 0 for n < 0.

Definition 3.1.2. We associate to a graded ring A the Grothendieck category of

(left) G-graded modules, GrA, with morphisms GrA(M,N) all degree preserving

A-linear morphisms.

For a G-graded A-module, N , we write for h ∈ G

N(h) =
⊕
g∈G

Ng+h

and we denote the graded module of morphism by

GrA(M,N) :=
⊕
g∈G

GrA(M,N(g)).
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Remark 3.1.3. In keeping with the notation above, we denote by Aop the opposite

ring with multiplication reversed and we view the category of right G-graded A-

modules as the category of left G-graded Aop-modules.

Definition 3.1.4. Let M be a graded A-module. We say that M has right limited

grading if there exists some D such that Md = 0 for all D ≤ d. We define left

limited grading analogously.

For a connected graded k-algebra, A, one has the bi-ideal

A≥m :=
⊕
n≥m

An.

Definition 3.1.5. Let A be a finitely generated connected graded algebra. Recall

that an element, m, of a module, M , is torsion if there is an n such that

A≥nm = 0.

We say that M is torsion if all its elements are torsion. We denote by TorsA the full

subcategory of GrA consisting of torsion modules.

3.2 Quotient Categories

Since the language for the objects in this section seems variable in the literature, we

collect here some basic definitions and results from the theory of quotient categories

so as to avoid any confusion. The standard reference is Gabriel (1962).

Definition 3.2.1. A full subcategory, S, of an abelian category, A is called a Serre

subcategory if for any short exact sequence

0→ X ′ → X → X ′′ → 0

of A, X is an object of S if and only if both X ′ and X ′′ are objects of S.

Remark 3.2.2. It is easy to check that a Serre subcategory is an abelian category

in its own right.
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It is well known that for a left Noetherian, connected graded k-algebra, A, TorsA

is a well-behaved Serre subcategory. In the commutative case, this of course covers

the class of all finitely generated connected graded k-algebras. However, as noncom-

mutative rings are generally less well behaved than their commutative counterparts,

we note that even the noncommutative polynomial algebra k〈x, y〉 is no longer left

Noetherian (see, e.g. Goodearl and Warfield (2004, Exercise 1, p. 8)). The following

proposition allows us to consider non-Noetherian rings.

Proposition 3.2.3. Let A be a connected graded k-algebra. If A is finitely generated

in positive degree, then TorsA is a Serre subcategory.

Proof. Let S = {xi}ri=1 be a set of generators for A as a k-algebra and let di = deg(xi).

Consider a short exact sequence

0→M ′ →M
p→M ′′ → 0.

It’s clear that if M is an object of TorsA, then so are M ′ and M ′′. Hence it suffices

to show that if M ′ and M ′′ are both objects of TorsA, then so is M .

First assume that there exists someN such that for any (X1, X2, . . . , XN) ∈ ∏N
i=1 S

we have (X1 · · ·XN)m = 0. Let d = max({di}ri=1) and take any a ∈ A≥dN . By

assumption we can write a = ∑n
i=1 αiai with αi ∈ k, each ai of the form

ai = Xi,1Xi,2 · · ·Xi,si , Xi,j ∈ S

and, for each i,

dN ≤
si∑
j=1

deg(Xi,j) = deg(a) ≤ dsi.

It follows that N ≤ si and hence am = 0. Thus it suffices to find such an N .

Fix an element m ∈M . Since M ′′ is an object of TorsA, there exists some n such

that A≥np(m) = 0 and hence A≥nm ∈M ′. In particular, if we let T = ∏n
i=1 S, then for

any element t = (X1, X2, . . . , Xn) ∈ T we have an element at = X1X2 · · ·Xn ∈ A≥n
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and so atm ∈M ′. Let nt be such that A≥nt(atm) = 0 and take

N = 2 max({nt}t∈T ∪ {n}) + 1.

If we take any element (X1, X2, . . . , XN) ∈ ∏N
i=1 S, then we can form an element

at = XN−nXN−n+1 · · ·XN ∈ A≥n.

By construction, atm ∈M ′ and a′t = X1X2 · · ·XN−n−1 ∈ A≥nt since nt ≤ N − n− 1.

Therefore we have

0 = a′t(atm) = (X1X2 · · ·XN)m,

as desired.

Our only concern for Serre subcategories will be for the construction of a quotient.

It can be shown that for any pair (X, Y ) of objects of A, equipping the collection of

pairs of subobjects (X ′, Y ′) satisfying X/X ′, Y ′ both objects of S with the ordering

(X ′, Y ′) ≤ (X ′′, Y ′′) if and only if X ′′ is a subobject of X ′, Y ′ is a subobject of Y ′′

forms a directed system. One defines the quotient of A by the Serre subcategory

S to be the category A/S with objects those of A and morphisms given by the colimit

over this system

A/S(X, Y ) = colim(X′,Y ′)A(X ′, Y/Y ′)

This quotient category comes equipped with a canonical projection functor

π : A → A/S

which is the identity on objects and takes a morphism to its image in the colimit

(Gabriel 1962, Cor. 1, III.1). The quotient is especially nice in the sense that the

quotient is always abelian, π is always exact and, in the case that A is Grothendieck,

the quotient is also Grothendieck.

In nice situations, this projection admits a section functor in the following sense.
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Proposition 3.2.4. Let A be an abelian category with injective envelopes and let S

be a serre subcategory. The following are equivalent:

(i) The functor π admits a fully faithful right adjoint, and

(ii) Every objectM of A contains a subobject which is an object of S and is maximal

amongst all such subobjects.

In this case, we say that S is a localizing subcategory.

Proof. This is Gabriel (1962, Cor. 1, III.3).

Thanks to Proposition 3.2.3, TorsA is a coreflective Serre subcategory admitting

a right adjoint, τ , to the inclusion, which takes a module M to its maximal torsion

submodule, τM , whenever A is finitely generated in positive degree. As such, we can

form the quotient.

Definition 3.2.5. For A a finitely generated graded k-algebra, denote the quotient

of the category of graded A-modules by torsion as

QGrA := GrA/TorsA

Denote by ω : QGrA→ GrA the right adjoint of π, and Q := ωπ.

Remark 3.2.6. In the sequel, it will be important to note that ω, being a fully

faithful right adjoint to an exact functor, preserves injectives. In particular, this will

guarantee that the adjunction lifts to a Quillen adjunction between C (GrA) and

C (QGrA), both equipped with the standard injective model structures. For details,

see Hovey (2001).

The category QGrA is defined to be the quasi-coherent sheaves on the noncom-

mutative projective scheme X.
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Remark 3.2.7. Note that, traditionally speaking, X is not a space, in general. In

the case A is commutative and finitely-generated by elements of degree 1, then a

famous result of Serre says that X is ProjA.

Proposition 3.2.8. Let A be an abelian category and let S be a Serre subcategory.

For any object X of A, the following are equivalent:

1. Given an exact sequence

0 K Z Y C 0ker f f coker f

with K and C objects of S, the canonical morphism

hX(f) : A(Y,X)→ A(Z,X)

is an isomorphism,

2. The maximal S-subobject of X is the zero object and any short exact sequence

0 X Y C 0f coker f

with C an object of S splits, and

3. For any object Y of A, π : A → A/S induces an isomorphism

A(Y,X) ∼= A/S(π(Y ), π(X)).

We say that an object X of A is S-closed if any of these conditions are satisfied.

Proof. First assume (1). Denote by ı : XS → X the maximal S-subobject of X. If

we let p = coker ı : X → X/XS , then we have the exact sequence

0 XS X X/XS 0 0.ı=ker p p coker p
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By assumption the morphism

hX(p) : A(X/XS)→ A(X,X)

is an isomorphism because both the zero object and XS are objects of S, hence p

admits a section s : X/XS → X. It follows from

0 = p ◦ ı = s ◦ p ◦ ı = ı

that XS is the zero object. Similarly, if we have any short exact sequence

0→ X
f→ Y

p→ C → 0

with C an object of S, then we obtain by assumption an isomorphism

hX(f) : A(Y,X)→ A(X,X)

which provides a section s : Y → X of f splitting the sequence. This establishes (2).

Assume (2). Let Y be an object of A. We first show that the structure morphism

πY,X : A(Y,X)→ A/S(πY, πX)

is surjective. Given a morphism f ∈ A/S(πY, πX), we may lift by the definition to

some morphism f ′ : Y ′ → X/X ′ where Y/Y ′ and X ′ are objects of S. We note that,

by assumption, X ′ ⊆ XS = 0, so X/X ′ = X and we obtain the pushout diagram

0 Y ′ Y Y/Y ′ 0

0 X Y
∐
Y ′ X (Y ∐Y ′ X) /X 0

ı

f ′ f ′′ ∃!h

ı′

with the induced map of cokernels an isomorphism. The bottom row splits by assump-

tion, giving a retract r : Y ∐′Y X → X of ı′, and hence a morphism r ◦ f ′′ ∈ A(Y,X).

By the colimit definition of the morphisms, we have the commutative diagram

A(Y,X) A(Y ′, X)

A/S(πY, πX)

hX(ı)

πY,X
πY ′,X
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with

π(hX(ı)(r ◦ f ′′)) = π(r ◦ f ′′ ◦ ı) = π(r ◦ ı′ ◦ f ′) = π(f ′) = f

from which it follows that πY,X : A(Y,X) → A/S(πY, πX) is surjective. To see that

πY,X is injective, we observe that a morphism f : Y → X satisfies π(f) = 0 if and

only if in the factorization

Y X

f(Y )

f

coim f im f

the object f(Y ) is an object of S. However, by maximality, the monomorphism im f

factors through the monic XS 0→ X, and thus

f = imf ◦ coim f = 0.

This establishes (3).

Finally, assume (3). Given an exact sequence

0 K Z Y C 0ker f f coker f

with K and C objects of S, we see that π(f) ∈ A/S(πZ, πY ) is an isomorphism,

hence

hπX(πf) : A/S(πY, πX)→ A/S(πZ, πX)

is an isomorphism. Because π is a functor we obtain the commutative diagram

A(Y,X) A/S(πY, πX)

A(Z,X) A/S(πZ, πX)

πY,X

hX(f) hπX(πf)
πZ,X

Since πY,X and πZ,X are isomorphisms by assumption, it follows that hX(f) is also

an isomorphism. This establishes (1).

As an immediate consequence of the Yoneda Lemma and condition 3 of Propo-

sition 3.2.8, loosely speaking, QGrA is just the full subcategory of TorsA-closed

objects.
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Corollary 3.2.9. An object M of GrA is TorsA-closed if and only if M ∼= QM .

Consequently, π preserves TorsA-closed injectives.

Proof. The second statement is immediate from the isomorphism of adjunction,

GrA(−, I) ∼= QGrA(π(−), πI).

In the special case that a localizing subcategory is closed under injective envelopes,

we have the following characterization of injectives within the ambient abelian cate-

gory.

Proposition 3.2.10. Let A be an abelian category with injective envelopes, and let

S be a localizing subcategory. For each object X of A denote by XS the maximal

S-subobject. If S is closed under injective envelopes, then for every injective I of A

I ∼= IS ⊕ ωπI.

Proof. Let IS → E be an injective envelope. Since I is injective we have an extension

over the inclusion of the maximal S-subobject

0 IS E

I
∃

and this extension is necessarily monic because injective envelopes are essential

monomorphisms. By maximality of IS amongst all S-subobjects of I, it follows that

IS = E is injective. Denoting by ε the unit of the adjunction π a ω : A A/S

the exact sequence

0 IS I ωπAI 0ε(I)

splits, as desired.

We record here as a corollary a more explicit version of Artin and Zhang (1994,

Prop 7.1 (5)), which states that every injective object of GrA is of the form I1 ⊕ I2,
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with I1 a torsion-free injective and I2 an injective torsion module. This will be useful

for computations involving total derived functors in the sequel.

Corollary 3.2.11. Let A be a left Noetherian, connected graded k-algebra. Every

injective I of GrA is isomorphic to τAI ⊕QAI.

Proof. By Artin and Zhang (1994, Prop 2.2) any essential extension of a torsion

module is torsion. Now apply Proposition 3.2.10.

3.3 Sheaf Cohomology

The funtor Q admits a more geometrically pleasing interpretation, which will serve

to help interpret the somewhat onerous conditions in the sequel. We will often refer

to the image of A in QGrA as OX , thinking of this as the structure sheaf on the

noncommutative projective scheme X. Following Artin and Zhang (1994), one defines

sheaf cohomology of a quasi-coherent sheafM = πM to be

H i(M) := ExtiQGrA(OX ,M)

and the un-graded sheaf cohomology by

H i(M) := H i(M)0.

For the Ext-computations, generally one takes an injective resolution I of ωM in

GrA then computes

H i(M) = H iQGrA(OX , πI) ∼= H iGrA(A,QI) ∼= H i(QI) ∼= RiQ(M).

In some sense, the functor Q should therefore be like the usual global sections functor.

On the other hand, one can also give more explicit descriptions of Q and τ .

29



www.manaraa.com

Proposition 3.3.1. Let A be a finitely generated connected graded k-algebra and let

M be a graded A-module. Then

τM = colimn GrA(A/A≥n,M)

QM = colimn GrA(A≥n,M).

Proof. This is standard localization theory, see Stenström (1975).

3.4 Noncommutative Biprojective Schemes

In studying questions of kernels and bimodules, we will have to move outside the realm

of Z-gradings. While one can generally treat G-graded k-algebras in our analysis, we

limit the scope a bit and only consider Z2-gradings of the following form.

Definition 3.4.1. Let A and B be connected graded k-algebras. The tensor product

A⊗k B will be equipped with its natural bi-grading

(A⊗k B)n1,n2 = An1 ⊗k Bn2 .

A bi-bi module for the pair (A,B) is a Z2-graded A⊗k B module.

Remark 3.4.2. As noted in the remarks above Van den Bergh (2001, Lemma 4.1),

the notion of A-torsion and B-torsion bi-bi modules is well-defined provided that

A and B are finitely generated as k-algebras. From this point on, unless stated

otherwise, all of our k-algebras will be assumed to be finitely generated.

There are a few notions of torsion for a bi-bi module that one could use, but we

take the following.

Definition 3.4.3. Let A and B be finitely generated, connected graded k-algebras,

and let M be a bi-bi A-B module. We say that M is torsion if it lies in the smallest

Serre subcategory containing A-torsion bi-bi modules and B-torsion bi-bi modules.
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Lemma 3.4.4. Let A and B be finitely generated, connected graded k-algebras. A

bi-bi module M is torsion if and only if there exists n1, n2 such that

(A⊗B)≥n1,≥n2m = 0

for all m ∈M .

Proof. For necessity, note that if M is A-torsion, then (A ⊗ B)≥n,≥0m = 0 for some

n for each m ∈M . Similarly if M is B-torsion then (A⊗B)≥0,≥nM = 0 for some n.

So it suffices to show that if

(A⊗B)≥n1,≥n2m = 0,∀m ∈M

then it lies in the Serre category generated by A and B torsion. Let τBM be the

B-torsion submodule of M and consider the quotient M/τBM . For m ∈M , we have

A≥n1m is B-torsion, so its image in the quotient M/τBM is A-torsion. Consequently,

M/τBM is A-torsion itself and M is an extension of B-torsion and A-torsion.

One can form the quotient category

QGrA⊗k B := GrA⊗k B/TorsA⊗k B.

Lemma 3.4.5. The quotient functor

π : GrA⊗k B → QGrA⊗k B

has a fully faithful right adjoint

ω : QGrA⊗k B → GrA⊗k B

with

QM := ωπM = colimn1,n2 Gr(A⊗k B)(A≥n1 ⊗k B≥n2 ,M)

Proof. This is just an application of Gabriel (1962, Cor. 1, III.3).
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Corollary 3.4.6. We have an isomorphism

QA⊗kB
∼= QA ◦QB

∼= QB ◦QA

Proof. This follows from Lemma 3.4.5 using tensor-Hom adjunction.

We also have the following standard triangles of derived functors.

Lemma 3.4.7. Let A and B be finitely generated connected graded algebras. Then,

we have natural transformations

Rτ → Id→ RQ

which when applied to any graded module M gives an exact triangle

RτM →M → RQM.

Proof. Before we begin the proof, we clarify the statement. The conclusions hold for

graded A (or B) modules and for bi-bi modules. Due to the formal properties, it is

economical to keep the wording of the theorem as so since any reasonable interpre-

tation yields a true statement.

For the case of graded A modules, this is well-known, see Bondal and Van den

Bergh (2003, Property 4.6). For the case of bi-bi A ⊗k B modules, the natural

transformations are obvious. For each M , the sequence

0→ τM →M → QM

is exact. It suffices to prove that if M = I is injective, then the whole sequence is

actually exact. Here one can use the system of exact sequences

0→ A≥n1 ⊗k B≥n2 → A⊗k B → (A⊗k B)/A≥n1 ⊗k B≥n2 → 0

and exactness of Hom(−, I) plus Lemma 3.4.4 to get exactness.
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3.5 Cohomological Assumptions

In general, good behavior of QGrA occurs with some homological assumptions on

the ring A. We recall two such common assumptions.

Definition 3.5.1. Let A be a connected graded k-algebra. Following Van den Bergh

(2001), we say that A is Ext-finite if for each n ≥ 0 the ungraded Ext-groups are

finite dimensional

dimk ExtnA(k, k) <∞.

Remark 3.5.2. The Ext’s are taken in the category of left A-modules, a priori.

Moreover, as noted in the opening remarks of Bondal and Van den Bergh (2003,

Section 4.1), if A is Ext-finite, then A is finitely presented.

Definition 3.5.3. Following Artin and Zhang (1994), given a graded left moduleM ,

we say A satisfies χ◦(M) if ExtnA(k,M) has right limited grading for each n ≥ 0.

Remark 3.5.4. The equivalence of these two definitions is Artin and Zhang (1994,

Proposition 3.8 (1)).

We recall some basic results on Ext-finiteness, essentially from Van den Bergh

(2001, Section 4).

Proposition 3.5.5. Assume that A and B are Ext-finite. Then

1. the ring A⊗k B is Ext-finite.

2. the ring Aop is Ext-finite.

Proof. See Van den Bergh (2001, Lemma 4.2) and the discussion preceeding it.

Proposition 3.5.6. Assume that A is Ext-finite. Then RτA and RQA both commute

with coproducts.
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Proof. See Van den Bergh (2001, Lemma 4.3) for RτA. Since coproducts are exact,

using the triangle

RτAM →M → RQAM

we see that RτA commutes with coproducts if and only if RQA commutes with

coproducts.

Corollary 3.5.7. Let A and B be finitely generated, connected graded k-algebras,

and let P be a chain complex of bi-bi A ⊗k B modules. Assume RQA commutes

with coproducts. Then, RQAP is naturally also a chain complex of bi-bi modules. In

particular, if A is Ext-finite, RQAP has a natural bi-bi structure.

Proof. Note we already have an A-module structure so we only need to provide a Z2

grading and a B-action. If we write

P =
⊕
v∈Z

P∗,v

as a direct sum of left graded A-modules, then we set

(RQAP )u,v := (RQA(P∗,v))u.

The B module structure is precomposition with the B-action on P . The only non-

obvious condition of the bi-bi structure is that

RQAP =
⊕
u,v

(RQAP )u,v

which is equivalent to pulling the coproduct outside of RQA. We can do this for

Ext-finite A thanks to Proposition 3.5.6.

Corollary 3.5.8. Assume that A and B are left Noetherian, and that RτA and RτB

both commute with coproducts. There exist natural morphisms of bimodules

βlP : RQAP → RQA⊗kBP

βrP : RQBP → RQA⊗kBP.
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Proof. Thanks to Corollary 3.5.7, we see that the question is well-posed. We handle

the case of βlP and note that case of βrP is the same argument, mutatis mutandis.

First we make some observations about objects of Gr (A⊗k B). If we regard such

an object, E, as an A-module, the A-action is

a · e = (a⊗ 1) · e

and we can view τAE as the elements e of E for which

a · e = (a⊗ 1) · e = 0

whenever a ∈ A≥m for some m ∈ Z. As such, τAE inherits a bimodule structure from

E and Z2-grading (τAE)u,v = (τAE∗,v)u coming from the decomposition

τAE = τA
⊕
v

E∗,v ∼=
⊕
v

τAE∗,v.

Thanks to Lemma 3.4.4, we can view τA⊗kBE as the elements e of E for which there

exists integers m and n such that a ⊗ b · e = 0 for all a ∈ A≥m and b ∈ B≥n. From

this viewpoint it’s clear that

a⊗ b · e = (1⊗ b) · (a⊗ 1 · e)

implies τAE includes into τA⊗kBE.

We equip C (GrA) with the injective model structure and use the methods of

model categories to compute the derived functors (see Hovey (2001) for more details).

Since we can always replace P by a quasi-isomorphic fibrant object, we can assume

that P n is an injective graded A⊗k B-module. Moreover, the fact that the canonical

morphisms A → A ⊗k B is flat implies that the associated adjunction is Quillen,

and hence P is fibrant when regarded as an object of C (GrA). Since QA preserves

injectives, it follows that each QAP
n is an injective object of GrA. It’s clear from

the fact that τAP n is an A⊗k B-module that

0→ τAP
n → P n → P n/τAP

n → 0
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is an exact sequence of Gr(A⊗k B) for each n. Moreover, by Lemma 3.2.11 we have

P n/τAP
n ∼= QAP

n. We thus define (βlP )n to be the epimorphism induced by the

universal property for cokerenels as in the commutative diagram

0 τAP
n P n QAP

n 0

0 τA⊗kBP
n P n QA⊗kBP

n 0

idPn

εA(Pn)

∃!(βlP )n

εA⊗kB(Pn)

To see that β actually defines a morphism of complexes, we have by naturality of

εA, εA⊗kB, and the commutative diagram defining (βlP )n above

(βlP )n+1 ◦QA(dnP ) ◦ εA(P n) = (βlP )n+1 ◦ εA(P n+1) ◦ dnP

= εA⊗kB(P n+1) ◦ dnP

= QA⊗kB(dnP ) ◦ εA⊗kB(P n)

= QA⊗kB(dnP ) ◦ (βlP )n ◦ εA(P n)

implies

(βlP )n+1 ◦QA(dnP ) = QA⊗kB(dnP ) ◦ (βlP )n

because εA⊗kB(P n) is epic. Hence we have a morphism

βlP : RQAP = QAP → QA⊗kBP = RQA⊗kBP.

For naturality, we note that, as the fibrant replacement is functorial, if we have

a morphism of bi-bi modules, then there is an induced morphism ϕ : P1 → P2 of

complexes between the replacements and for each n a commutative diagram

P n
1 QAP

n
1 QA⊗kBP

n
1

P n
2 QAP

n
2 QA⊗kBP

n
2

ϕn

εA(Pn1 )

QA(ϕn)

(βlP1
)n

QA⊗kB(ϕn)
εA(Pn2 ) (βlP2

)n
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The left square commutes by naturality of εA and the right square commutes because

(βlP2)n ◦QA(ϕn) ◦ εA(P n
1 ) = (βlP2)n ◦ εA(P n

2 ) ◦ ϕn

= εA⊗kB(P n
2 ) ◦ ϕn

= QA⊗kB(ϕn) ◦ εA⊗kB(P n
1 )

= QA⊗kB(ϕn) ◦ (βlP1)n ◦ εA(P n
1 )

and εA(P n
1 ) is epic.

Proposition 3.5.9. Assume that A and B are left Noetherian and Ext-finite. Then,

we have natural quasi-isomorphisms

RQB(βlP ) : RQB(RQAP )→ RQA⊗kBP

RQA(βrP ) : RQA(RQBP )→ RQA⊗kBP.

Consequently, βlP (respectively βrP ) is an isomorphism if and only if RQAP (respec-

tively RQBP ) is QB (respectively QA) torsion-free.

Proof. As above, we can replace P with a quasi-isomorphic fibrant object, so it suffices

to assume that P is fibrant. We see from Corollary 3.4.6 that

RQA⊗kBP
∼= QA⊗kBP

∼= QB ◦QAP ∼= R(QB ◦QA)P

The result now follows from the natural isomorphism (see, e.g., Hovey (1999, Theorem

1.3.7))

RQB ◦RQA → R(QB ◦QA)

In the case that A = B, there is a particular bi-bi module of interest.

Definition 3.5.10. Let ∆A be the A-A bi-bi module with

(∆A)i,j = Ai+j
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and the natural left and right A actions. If the context is clear, we will often simply

write ∆.

Using the standard homological assumptions above, one has better statements for

P = ∆.

Proposition 3.5.11. Let A be left (respectively, right) Noetherian and assume that

the condition χ◦(A) holds (respectively, as an Aop-module). Then the morphism βl∆

(respectively, βr∆) of Corollary 3.5.8 is a quasi-isomorphism.

Proof. We have a triangle in D(GrA⊗k Aop)

RτAop(RQA∆)→ RQA∆→ RQAop(RQA∆)→ RτAop(RQA∆)[1].

By Proposition 3.5.9, RQAop(RQA∆) ∼= RQA⊗kAop∆, so it suffices to show that we

have RτAop(RQA∆) = 0. Applying RτAop to the triangle

RτA∆→ ∆→ RQA∆→ RτA∆[1]

we obtain the triangle

RτAop(RτA∆)→ RτAop∆→ RτAop(RQA∆)→ RτAop(RτA∆)[1]

and so we are reduced to showing that

RτA∆ ∼= RτA⊗kAop∆ ∼= RτAop(RτA∆)

which then implies that RτAop(RQA∆) = 0, as desired.

First we note that for any bi-bi module, P , the natural morphism

RτAopP → P

is a quasi-isomorphism if and only if the natural morphism

RτAopPx,∗ → Px,∗
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is a quasi-isomorphism. Moreover, for a right A-module,M , if Hj(M) is right limited

for each j then RτAopM → M is a quasi-isomorphism, so it suffices to show that

(RjτA∆)x,∗ has right limited grading for each x and j. Now, by Artin and Zhang

(1994, Cor. 3.6 (3)), for each j

RjτA(∆)x,y = RjτA(∆∗,y)x = RjτA(A(y))x = 0

for fixed x and sufficiently large y. This implies that the natural morphism

RτAop(RτA(∆)x,∗)→ RτA∆x,∗

is a quasi-isomorphism, as desired.

Similar hypotheses of Proposition 3.5.11 will appear often, so we attach a name.

Definition 3.5.12. Let A and B be connected graded k-algebras. If A is Ext-finite,

left and right Noetherian, and satisfies χ◦(A) and χ◦(Aop) then we say that A is

delightful. If A and B are both delightful, then we say that A and B form a

delightful couple.

3.6 Segre Products

Definition 3.6.1. Let A and B be connected graded k-algebras. The Segre product

of A and B is the graded k-algebra

A×k B =
⊕
0≤i

Ai ⊗k Bi.

Proposition 3.6.2. If A and B are connected graded k-algebras that are finitely

generated in degree one, then A×k B is finitely generated in degree one.

Proof. Let S = {xi}ri=1 ⊆ A1 and T = {yi}si=1 ⊆ B1 be generators. Take a homoge-

nous element a⊗ b ∈ Ad ⊗k Bd. We can write

a =
m∑
i=1

αiX
(i)
1 · · ·X

(i)
d and b =

n∑
j=1

βjY
(j)

1 · · ·Y (j)
d
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for αi, βj ∈ k, (X(i)
1 , . . . , X

(i)
d ) ∈ ∏d

i=1 S, and (Y (j)
1 , . . . , Y

(j)
d ) ∈ ∏d

i=1 T . Hence we have

a⊗ b =
(

m∑
i=1

αiX
(i)
1 · · ·X

(i)
d

)
⊗

 n∑
j=1

βjY
(j)

1 · · ·Y (j)
d


=

m∑
i=1

αiX(i)
1 · · ·X

(i)
d ⊗

 n∑
j=1

βjY
(j)

1 · · ·Y (j)
d


=

m∑
i=1

 n∑
j=1

(
αiX

(i)
1 · · ·X

(i)
d ⊗ βjY

(j)
1 · · ·Y (j)

d

)
=

∑
i,j

αiβj(X(i)
1 ⊗ Y

(j)
1 ) · · · (X(i)

d ⊗ Y
(j)
d )

Therefore A×k B is finitely generated in degree one by {xi ⊗ yj}i,j.

As a nice corollary, we can relax the conditions on Van Rompay (1996, Theorem

2.4) to avoid the Noetherian conditions on the Segre and tensor products.

Theorem 3.6.3 (Van Rompay (1996, Theorem 2.4)). Let A and B be finitely gen-

erated, connected graded k-algebras, and let S = A ×k B, T = A ⊗k B. If A and B

are both generated in degree one, then there is an equivalence of categories

V : QGrS QGrT

E πT (T ⊗S ωSE)

Proof. As noted in Van Rompay’s comments preceding the Theorem, the Noetherian

hypothesis is necessary only to ensure that QGrS and QGrT are well-defined. Thanks

to Proposition 3.2.3 and Lemma 3.4.4, the equivalence follows by running the same

argument.
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Chapter 4

Graded Morita Theory: A Warmup

This section demonstrates how the tools of dg-categories yield a nice perspective on

derived graded Morita. Compare with the well-known graded Morita statement in

Zhang (1996).

In order to utilize the machinery of dg-categories, we must first translate chain

complexes of graded modules into dg-categories. While one can naïvely regard this

category as a dg-category by way of an enriched Hom entirely analogous to the

ungraded situation, the relevant statements of Toën (2007) are better suited to the

perspective of functor categories. As such, we adapt the association of a ringoid with

one object to a ring from Section 2.2 to the graded situation, considering instead a

ringoid with multiple objects.

4.1 Preliminaries on Ringoids and their Modules

Though these results are stated in fuller generality, in the sequel we will generally be

concerned only with the groups Z and Z2. We begin our adaptation with our notion

of ringoids with multiple objects.

Definition 4.1.1. To a G-graded k-algebra, A, associate the category A with objects

the group G, morphisms given by

A(g1, g2) = Ag2−g1 ,

and composition defined by the multiplication Ag2−g1Ag3−g2 ⊆ Ag3−g1 .
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The category A is naturally enriched over Mod k. However, since we wish to deal

with chain complexes, we will upgrade our enriching category to the category of chain

complexes by viewing modules as chain complexes concentrated in degree zero. In

particular, we regard A as a dg-category by considering the k-module of morphisms

as the complex

A(g1, g2)n =


Ag2−g1 if n = 0,

0 else.

with zero differential. From this point on, whenever we speak of modules, we will

mean the full subcategory of the functor category Fun(Aop, C (k)) consisting of C (k)-

enriched functors, which we denote by dgMod (A).

As an unfortunate side effect of considering chain complexes of graded modules,

there will be many instances where there are two simultaneous gradings on an object:

homological degree and homogenous degree. We avoid the latter term, preferring

weight, and use degree solely when referring to homological degree.

For clarity, consider the example of a complex of G-graded left A-modules, M .

The degree n piece of M is the G-graded left A-module Mn. The weight g piece of

the graded module Mn is the A0-module of homogenous elements of (graded) degree

g, Mn
g . Note that in this terminology, the usual morphisms of graded modules are

the weight zero morphisms.

As mentioned above, we have a natural enrichment of the category of chain com-

plexs of graded modules over a graded ring.

Definition 4.1.2. Denote by C (GrA) the dg-category with objects chain complexes

of G-graded left A-modules and morphisms defined as follows.

We say that a morphism f : M → N of degree p is a collection of morphisms

fn : Mn → Nn+p

42



www.manaraa.com

of weight zero. We denote by C (GrA) (M,N)p the collection of all such morphisms,

which we equip with the differential

d(f) = dN ◦ f + (−1)p+1f ◦ dM

and define C (GrA) (M,N) to be the resulting chain complex. Composition is the

usual composition of graded morphisms.

We denote by C (Gr (Aop)) the same construction with G-graded right A-modules,

which are equivalently left modules over the opposite ring, Aop.

Remark 4.1.3. One should note that the closed morphisms are precisely the mor-

phisms of complexes M → N [p] and, in particular, the closed degree zero morphisms

are precisely the usual morphisms of complexes.

The following lemma illustrates that modules and chain complexes are one and

the same.

Lemma 4.1.4. Let G be an abelian group. If A is a G-graded algebra over k and A

the associated dg-category, then there is an isomorphism of dg-categories

C (GrA) ∼= dgMod (A) .

Proof. We first construct a dg-functor F : C (GrA)→ dgMod (A). For each element

g of G, denote by A(g)[0] the complex with A(g) in degree zero and consider the full

subcategory of C (GrA) of all such complexes. We see that a morphism

f ∈ C (GrA) (A(g)[0],M)n

is just the data of a morphism f 0 : A(g)→Mn which gives

C (GrA) (A(g)[0],M)n ∼= GrA(A(g),Mn) ∼= Mn
−g

and hence M−g := C (GrA) (A(g)[0],M) is the complex with Mn
−g in degree n. In

particular, when M = A(h)[0], we have

C (GrA) (A(g)[0], A(h)[0]) := A(h)[0]−g = A(g, h),
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which allows us to identify this subcategory with A via the enriched Yoneda em-

bedding, A(h)[0] corresponding to the representable functor A(−, h). Using this

identification, we can define the image of M in dgMod (A) to be the dg-functor that

takes an object g ∈ G to

M−g = C (GrA) (A(g)[0],M)

with structure morphism

A(g, h) ∼= C (GrA) (A(g)[0], A(h)[0])→ C (k) (M−h,M−g)

induced by the representable functor C (GrA) (−,M). We define the image of a mor-

phism f ∈ C (GrA) (M,N) to be the natural transformation given by the collection

of morphisms

hA(−g)[0](f) : C (GrA) (A(−g)[0],M)→ C (GrA) (A(−g)[0], N)

indexed by G.

Conversely, we note that the data of a functor M : Aop → C (k) is a collection of

chain complexes, Mg := M(g), indexed by G and morphisms of complexes

· · · Ag−h 0 · · ·

· · · C (k) (Mg,Mh)0 C (k) (Mg,Mh)1 · · ·

The non-zero arrow factors through Z0(C (k) (Mg,Mh)), so the structure morphism

is equivalent to giving a morphism

Ag−h → C (k) (Mg,Mh)

and thus M determines a complex of graded A-modules

M̃ =
⊕
g∈G

M−g.
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A morphism η : M → N is simply a collection of natural transformations ηp such that

for each g ∈ G we have ηp(g) ∈ C (k) (Mg, Ng)p and the naturality implies that ηp(g)

is A-linear. The natural transformation ηp thus determines a morphism

⊕
g∈G

ηp(−g) ∈ C (GrA)
(
M̃, Ñ

)p
,

and hence η determines a morphism in C (GrA)
(
M̃, Ñ

)
, which is the collection of

all such homogenous components. This defines a dg-functor dgMod (A) → C (GrA)

which is clearly the inverse of F .

Remark 4.1.5. It is worth noting that it is natural from the ringoid perspective to

reverse the weighting on the opposite ring in that, formally,

Aop
g = Aop(0, g) = A(g, 0) = A−g

so that Aop(−, h) = A(h,−) is the representable functor corresponding to the left

module Aop(h) by

⊕
g∈G
Aop(−g, h) =

⊕
g∈G
A(h,−g) =

⊕
g∈G

A−(g+h) =
⊕
g∈G

Aop
g+h = Aop(h).

With this convention, when considering right modules, one can dispense with the

formality of the opposite ring by constructing from a complex, M , the dg-functor

A → C (k) mapping g to Mg := C (Gr (Aop)) (A(−g)[0],M).

When G = Z2, and A, B are Z-graded algebras over k, we denote the dg-category

of chain complexes of G-graded B-A-bimodules by C (GrAop ⊗k B). We associate to

the Z2-graded k-algebra Aop⊗k B the tensor product of the associated dg-categories,

Aop ⊗ B. Note that, as in the remark above, in the identification

C (Gr (Aop ⊗k B)) ∼= dgMod (Aop ⊗ B)

the weighting coming from the A-module structure is reversed. The representable

functors in this case are

Aop ⊗ B ((−,−), (u, v)) := Aop(−, u)⊗k B(−, v)
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and correspond to (Aop ⊗k B)(u, v) := Aop(u)⊗k B(v) by

⊕
(x,y)∈Z2

Aop ⊗ B ((−x,−y), (u, v)) =
⊕

(x,y)∈Z2

Aop
u+x ⊗k Bv+y = Aop(u)⊗k B(v)

Remark 4.1.6. It is sometimes convenient to note the following. Let P be a chain

complex of bi-bi A-modules. If P(m,n) = Pm,−n is the corresponding dg A-A-

bimodule, then by the construction of the tensor product, it’s easy to see that for any

u the tensor product

A(−, u)⊗A P ∼= P(u,−)

corresponds to the chain complex of left A-modules

⊕
n∈Z
P(u,−n) =

⊕
n∈Z

Pu,n = Pu,∗

We will often identify P with P , as well as A(−, u) with A(u), and, under this

identification, write P ⊗A A(u) = Pu,∗.

Similarly, for any v, if we regard A(v) as a right A-module, we will often write

A(v)⊗A P = P∗,−v for the chain complex of right A-modules. We remark that as an

artifact of the reverse weighting, we can homogenize these formulas by thinking of P

as a left Aop-module, make the formal identification A(−v) = Aop(v) and then

Aop(v)⊗A P = A(−v)⊗A P = P∗,v.

4.2 Derived Graded Morita Theory

From this construction, we have a dg-enhancement, h-proj (A), of the derived category

of graded modules, D(GrA). Passing through the machinery of Corollary 2.6.5, we

have an isomorphism in Ho (dgcatk)

RHomc (h-proj (A) , h-proj (B)) ∼= h-proj (Aop ⊗ B) ,

so we identify an object, F , of RHomc (h-proj (A) , h-proj (B)) as a dg A-B-bimodule,

P , which in turn corresponds to a morphism ΦP : A → h-proj (B) by way of the

symmetric monoidal closed structure on dgcatk.

46



www.manaraa.com

Following Section 3.3 of Canonaco and Stellari (2015), we identify the homotopy

equivalence class, [P ]Iso, of P with [ΦP ] ∈ [A, h-proj (B)]. The extension of ΦP ,

P ⊗A − = Φ̂P : h-proj (A)→ h-proj (B)

descends to a morphism [Φ̂P ] ∈ [h-proj (A) , h-proj (B)] and induces a triangulated

functor that commutes with coproducts

H0(Φ̂P ) : D(GrA) D(GrB)

M P ⊗L
AM.

In particular, given an equivalence f : D(GrA) → D(GrB), we obtain from Lunts

and Orlov (2010) a quasi-equivalence

F : h-proj (A)→ h-proj (B) .

Tracing through the remarks above, we obtain an object P of h-proj (Aop ⊗ B) pro-

viding an equivalence

H0(Φ̂P ) : D(GrA)→ D(GrB).
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Chapter 5

Derived Morita Theory for Noncommutative

Projective Schemes

Let A and B be left Noetherian connected graded k-algebras. We want to extend the

ideas from Chapter 4 to cover dg-enhancements of D(QGrA).

5.1 Vanishing of a tensor product

We recall a particularly nice type of property of objects in the setting of compactly

generated triangulated categories. In the sequel, many of our properties will be of

this type, so we give this little gem a name.

Definition 5.1.1. Let D be a compactly generated triangulated category. Let P be

a property of objects of D. We say that P is RTJ if it satisifies the following three

conditions.

• Whenever A→ B → C is a triangle in D and P holds for A and B, then P holds

for C.

• If P holds for A, then P holds for the translate A[1].

• Let I be a set and Ai be objects of D for each i ∈ I. If P holds for each Ai,

then P holds for ⊕i∈I Ai.

Proposition 5.1.2. Let P be an RTJ property that holds for a set of compact gener-

ators of D. Then P holds for all objects of D.
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Proof. Let P be the full triangulated subcategory of objects for which P holds. Then

P

• contains a set of compact generators,

• is triangulated, and

• is closed under formation of coproducts.

Thus, P is all of D.

Definition 5.1.3. Let M be a complex of left graded A-modules and let N be a

complex of right graded A-modules. We say that the pair satisfies F(M,N) if we

have vanishing of the tensor product

RτAopN⊗L
ARQAM = 0.

If F(M,N) holds for all M and N , then we say that A satisfies F.

Proposition 5.1.4. Let A be a finitely generated, connected graded k-algebra. As-

sume that RτA and RτAop commute with coproducts. Then A satisfies F if and only

if F(A(u), A(v)) holds for each u, v ∈ Z.

Proof. The necessity is clear, so assume that F(A(u), A(v)) holds for each u, v ∈ Z.

First, we consider the property F(M,A(v)) of objects, M , of D(GrA). It’s clear that

this is an RTJ property that holds, by assumption, for the set of compact generators,

{A(u)}u∈Z. Hence F(M,A(v)) holds for all M by Proposition 5.1.2.

Now fix any object M of D(GrA) and consider the property F(M,N) of objects,

N , of D(GrAop). This is again an RTJ property for which F(M,A(v)) holds for all

v ∈ Z. By Proposition 5.1.2, F(M,N) holds for all N . Since the choice of M was

arbitrary, it follows that F(M,N) holds for allM and for all N . Therefore A satisfies

F.
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There are various types of projection formulas. We record here two which will be

useful in the sequel.

Proposition 5.1.5. Let A be a finitely generated, connected graded k-algebra. Let

P be a complex of bi-bi A-modules and let M be a complex of left graded A-modules.

Assume RτA commutes with coproducts. There is a natural quasi-isomorphism

(RτAP )
L
⊗AM → RτA

(
P

L
⊗AM

)
.

Assume RQA commutes with coproducts. There is a natural quasi-isomorphism

(RQAP )
L
⊗AM → RQA

(
P

L
⊗AM

)
.

Proof. We treat the τ projection formula. The Q projection formula is analogous. By

Corollary 3.5.7, we see that the tensor product is well-defined. It suffices to exhibit

a natural transformation for the underived functors applied to modules to generate

the desired natural transformation. Given

ψ ⊗A m ∈ GrA(A/A≥m, P )⊗AM

we naturally get

ψ̃ : A/A≥m → P ⊗AM

a 7→ ψ(a)⊗A m.

Taking the colimit gives the natural transformation.

Let us look at the natural transformation when P = A(u)⊗kA(v), andM = A(w).

Recall from Remark 4.1.6 that

RτA(P )⊗L
A A(w) ∼= RτA(P )⊗A A(w) ∼= RτA(P )∗,w :=

⊕
x∈Z

RτA(P∗,w)x = RτA(P∗,w)

which is compatible with the natural transformation. The property that the natural

transformation is a quasi-isomorphism is RTJ in each entry. Thus, it holds for all P

and M by Proposition 5.1.2.
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For the hypothesis, recall Definition 3.5.12.

Proposition 5.1.6. Assume A is delightful. Then F holds for A.

Proof. By Proposition 5.1.4, it suffices to check F(M,A(v)) for each v. This is

equivalent to F(M,
⊕

v A(v)). Equipping the sum with a bi-bi structure as ∆, we

reduce to checking F(M,∆). Using Proposition 3.5.11 and Lemma 3.4.7 for A and

Aop, we have a natural quasi-isomorphism

RτAop∆
L
⊗A RQAM ∼= RτA∆

L
⊗A RQAM.

Using Proposition 5.1.5, we have a natural quasi-isomorphism

RτA∆
L
⊗A RQAM ∼= RτA

(
∆

L
⊗A RQAM

)
∼= RτA (RQAM) = 0.

5.2 Duality

One can regard the bimodule RQA⊗kAop∆ as a sum of A-modules

RQA⊗kAop∆ =
⊕
x

(RQA⊗kAop∆)∗,x

and define for any object, M , of C (GrA) the object

RHomA(M,RQA⊗kAop∆) =
⊕
x

R HomA(M, (RQA⊗kAop∆)∗,x)

of C (Gr (Aop)). Consider the functor

(−)∨ : C (GrA)op → C (Gr (Aop))

M 7→ RHomA (M,RQA⊗kAop∆)

Lemma 5.2.1. Assume A is delightful. Then the natural map

id→ (−)∨∨
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given by evaluation is a quasi-isomorphism for RQAA(x), for all x. Furthermore,

there are quasi-isomorphisms

(RQAA(x))∨ ∼= RQAopA(−x).

Proof. We first exhibit the latter quasi-isomorphisms. Using the quasi-isomorphisms

of Proposition 3.5.11, we obtain two quasi-isomorphic decompositions of RQA⊗kAop∆

as a sum of A-modules

(RQA⊗kAop∆)∗,j ∼= (RQA∆)∗,j =
⊕
i

(RQA∆)i,j =
⊕
i

RQA(∆∗,j)i = RQAA(j)

and as a sum of Aop-modules

(RQA⊗kAop∆)i,∗ ∼= (RQAop∆)i,∗ =
⊕
j

(RQAop∆)i,j =
⊕
j

RQAop(∆i,∗)j = RQAopA(i).

The first implies that (RQA⊗kAop∆)∗,j is right orthogonal to τA-torsion, hence by

applying RHomA(−,RQA⊗kAop∆) to the triangle

RτAA(x)→ A(x)→ RQAA(x)

we obtain a triangle

(RτAA(x))∨ ∼= 0→ A(x)∨ ∼→ (RQAA(x))∨.

Moreover, since A(x) is compact, we also obtain a quasi-isomorphism

(RQAA(x))∨ ∼= A(x)∨ =
⊕
j

R HomA(A(x), (RQA⊗kAop∆)∗,j)

∼= R HomA

A(x),
⊕
j

(RQA⊗kAop∆)∗,j

 = R HomA(A(x),RQA⊗kAop∆)

∼= (RQA⊗kAop∆)−x,∗

and the second decomposition yields

(RQAA(x))∨ ∼= (RQA⊗kAop∆)−x,∗ ∼= RQAopA(−x).
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Applying this twice, we get

(RQAA(x))∨∨ ∼= RQAA(x).

We need only check that the natural map ν : 1 → (−)∨∨ induces the identity after

this quasi-isomorphism.

Note that we found a map

A(−x)→ RQAopA(−x)→ (RQAA(x))∨

inducing the quasi-isomorphism (RQAA(x))∨∨ ∼= RQAA(x). If α is the image of 1 in

RQAopA(−x), denote by α∨ the image in (RQAA(x))∨. Since 1 ∈ A(−x)x, one can

identify α∨ as a morphism

RQAA(x)→ (RQA⊗kAop∆)∗,x ∼= RQAA(x)

which is the natural inclusion. For any a ∈ RQAA(x) we obtain a morphism

eva : (RQAA(x))∨ → RQA⊗Aop∆

and hence

eva(α∨) = α∨(a) = a

Thus, we see that ν is quasi-fully faithful on RQAA(x) for all x.

Definition 5.2.2. Let QA be the full dg-subcategory of C (GrA) with objects given

by QA applied to injective resolutions of A(x) for all x.

Corollary 5.2.3. Assume that A is delightful. The functor (−)∨ induces a quasi-

equivalence (QA)op ∼= Q(Aop).

Proof. From Lemma 5.2.1, we see that (−)∨ is quasi-fully faithful on QA and has

quasi-essential image Q(Aop).
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Lemma 5.2.4. Assume that A is delightful. There is a natural map

η : M∨ L
⊗A N → HomA(M,N),

which is a quasi-isomorphism for all M and all N ∼= RQAN .

Proof. First, note that we have the natural map

M∨ L
⊗A N → RHomA(M,RQA⊗kAop∆

L
⊗A N).

For M = A(x), we see this map is a quasi-isomorphism using the fact that A satisfies

F from Proposition 5.1.6. Since A satisfies F, the map

N ∼= ∆⊗A N → RQA⊗kAop∆
L
⊗A N

is a quasi-isomorphism. So the map

RHomA(M,N)→ RHomA(M,RQA⊗kAop∆
L
⊗A N)

is also a quasi-isomorphism. Combining the two gives the desired quasi-isomorphism

for M = A(x). But the condition η is a quasi-isomorphism is RTJ in M so is true for

all M by Proposition 5.1.2

5.3 Products

Definition 5.3.1. For a graded k-algebra, A, let h-inj (GrA) be the full dg-

subcategory of C (GrA) with objects the K-injective complexes of Spaltenstein

(1988). Similarly, we let h-inj (QGrA) be the full dg-subcategory of C (QGrA) with

objects the K-injective complexes.

Lemma 5.3.2. The functor

ω : h-inj (QGrA)→ h-inj (GrA)

is well-defined. Moreover, H0(ω) is an equivalence with its essential image.
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Proof. For the first statement, we just need to check that ω takes K-injective com-

plexes to K-injective complexes. This is clear from the fact that ω is right adjoint to

π, which is exact.

To see this is fully faithful, we recall that πω ∼= Id so

h-inj (GrA) (ωM,ωN) ∼= h-inj (QGrA) (πωM,N) ∼= h-inj (QGrA) (M,N).

Remark 5.3.3. Using Lemma 5.3.2, we can either use h-inj (QGrA) or its image

under ω in h-inj (GrA) as an enhancement of D(QGrA).

Consider the full dg-subcategory of h-inj (QGrA⊗k B) consisting of the objects

πA⊗kB(A(u)⊗k B(v))

for all u, v. Denote this subcategory by E .

Lemma 5.3.4. If A and B are both Ext-finite, left Noetherian, and right Noetherian,

then the dg-category E is naturally quasi-equivalent to QA⊗k QB.

Proof. Recall that QA is the full dg-subcategory of C (GrA) consisting of QA applied

to injective resolutions of A(u), loosely denoted by RQAA(u), and similarly for QB.

We have the exact functor

−⊗k − : C (GrA)⊗k C (GrB)→ C (GrA⊗k B)

which tensors a pair of modules over k to yield a bimodule. First consider the triangle

RτA⊗B(RQAA(u)⊗k RQBB(v))→ RQAA(u)⊗k RQBB(v)

→ RQA⊗B(RQAA(u)⊗k RQBB(v)).

By Proposition 3.5.9, we have

RQA⊗B(RQAA(u)⊗k RQBB(v)) ∼= RQA (RQB (RQAA(u)⊗k RQBB(v))) .
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Since RτB commutes with coproducts, we have a natural quasi-isomorphism

RQA (RQB (RQAA(u)⊗k RQBB(v))) ∼= RQ2
AA(u)⊗k RQ2

BB(v)

∼= RQAA(u)⊗k RQBB(v).

Thus,

RQAA(u)⊗k RQBB(v)→ RQA⊗B(RQAA(u)⊗k RQBB(v))

is a quasi-isomorphism for all u, v with τA⊗kB torsion cone. The same consideration

shows that the map

A(u)⊗k A(v)→ RQAA(u)⊗k RQBB(v)

induces a quasi-isomorphism

RQA⊗B(A(u)⊗k B(v))→ RQA⊗B(RQAA(u)⊗k RQBB(v))

with τA⊗kB torsion kernel. Now we check that these morphisms induce quasi-

isomorphisms on the morphism spaces giving our desired quasi-equivalence. We have

a commutative diagram
Hom(RQAA(u)⊗k RQBB(v),RQAA(x)⊗k RQBB(y))

Hom(A(u)⊗k B(v),RQAA(x)⊗k RQBB(y))

Hom(RQAA(u)⊗k RQBB(v),RQA⊗kB(RQAA(x)⊗k RQBB(y)))

Hom(A(u)⊗k B(v),RQA⊗kB(RQAA(x)⊗k RQBB(y)))

Hom(RQA⊗kB(RQAA(u)⊗k RQBB(v)),RQA⊗kB(RQAA(x)⊗k RQBB(y)))

a

b

c

d

e

and we want to know first that a and b are quasi-isomorphisms. We know that b is

a quasi-isomorphism since RτA⊗kB is left orthogonal to RQA⊗kB so we only need to

check a. Since A(u)⊗k B(v) is free and

RQAA(u)⊗k RQBB(v)→ RQA⊗B(RQAA(u)⊗k RQBB(v))
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is a quasi-isomorphism, d is a quasi-isomorphism. Since RQA and RQB commute

with coproducts, using tensor-Hom adjunction shows that c is a quasi-isomorphism.

Finally, since the cone over the map

A(u)⊗k A(v)→ RQAA(u)⊗k RQBB(v)

is annihilated by τA⊗kB, we see that e is also a quasi-isomorphism. This implies

that a is a quasi-isomorphism. By an analogous argument, the endomorphisms of

RQA⊗B(A(u) ⊗k B(v)) and RQA⊗B(RQAA(u) ⊗k RQBB(v)) are quasi-isomorphic.

5.4 The quasi-equivalence

We now turn to the main result.

Theorem 5.4.1. Let k be a field. Let A and B be connected graded k-algebras. If A

and B form a delightful couple, then there is a natural quasi-equivalence

F : h-inj (QGrAop ⊗k B)→ RHomc (h-inj (QGrA) , h-inj (QGrB))

such that for an object P of D(QGrAop ⊗k B), the exact functor H0(F (P )) is iso-

morphic to

ΦP (M) := πB

(
RωAop⊗kBP

L
⊗A RωAM

)
.

Proof. Applying Corollary 2.6.5, it suffices to provide a quasi-equivalence

G : h-inj (QGrAop ⊗k B)→ h-proj ((QA)op ⊗k QB) .

Using Corollary 5.2.3, we have a quasi-equivalence

h-proj ((QA)op ⊗k QB) ∼= h-proj (QAop ⊗k QB) .

From Lemma 5.3.4 we have a quasi-fully faithful functor

ı : QAop ⊗k QB → h-inj (QGrAop ⊗k B)
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which induces a dg-functor

ı∗ : h-inj (QGrAop ⊗k B)→ dgMod (QAop ⊗k QB)

mapping an object P of h-inj (QGrAop ⊗k B) to the dg-functor

(QAop ⊗QB)op C (k)

E h-inj (QGrAop ⊗k B) (ıE, P ).

We first note that, because the image of objects of QAop ⊗QB are compact objects

of h-inj (QGrAop ⊗k B), for any set J the natural map

ı∗

⊕
j∈J

Pj

→⊕
j∈J

ı∗(Pj)

is a quasi-isomorphism, so ı∗ is continuous. By making the identification of the object

Pu,v = πAop⊗kB(A(u)⊗k B(v)) with an object of dgMod (QAop ⊗QB), we obtain the

quasi-isomorphism

ı∗(Pu,v) = h-inj (QGrAop ⊗k B) (ı(−), Pu,v) ∼= dgMod (QAop ⊗k QB) (−, Pu,v)

and, consequently, the quasi-isomorphism

dgMod (QAop ⊗QB) (ı∗(Pu,v), ı∗(Pu′,v′)) ∼= ı∗(Pu′,v′)(Pu,v)

= h-inj (QGrAop ⊗k B) (Pu,v, Pu′,v′).

Since the collections {ı∗Pu,v}Z2 and {Pu,v}Z2 are a set of compact generators for

h-proj (QAop ⊗k QB) and h-inj (QGrAop ⊗k B), respectively, it follows that ı∗ is a

quasi-equivalence between h-inj (QGrAop ⊗k B) and h-proj (QAop ⊗QB), the full dg-

subcategory of compact objects of dgMod (QAop ⊗QB), by Proposition 2.7.3.

Tracing out the quasi-equivalences, one just needs to manipulate

Hom(RQAA(x)∨ ⊗k RQBB(y), P ) ∼=

Hom(RQBB(y),Hom(RQAA(x)∨,RωAop⊗kBP )) ∼=

Hom(RQBB(y),RωAop⊗kBP
L
⊗A RQAA(x))
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using Propostion 5.1.6 and Lemma 5.2.4. This says that the induced continuous

functor is

M 7→ πB

(
RωAop⊗kBP

L
⊗A RωAM

)
.

The following statement is now a simple application of Theorem 5.4.1 and results

of Lunts and Orlov (2010).

Corollary 5.4.2. Let A and B be a delightful couple of connected graded k-algebras

with k a field. Assume that there exists an equivalence

f : D(QGrA)→ D(QGrB).

Then there exists an object P ∈ D(QGrAop ⊗k B) such that

ΦP : D(QGrA)→ D(QGrB)

is an equivalence.

Proof. Applying Lunts and Orlov (2010, Theorem 1) we know there is a quasi-

equivalence between the unique enhancements, that is a morphism

F : h-inj (QGrA)→ h-inj (QGrB)

of Ho (dgcatk) inducing an equivalence

H0(F ) : H0(h-inj (QGrA)) = D(QGrA)→ H0(h-inj (QGrB)) = D(QGrB).

By Theorem 5.4.1, there exists a P ∈ D(QGrAop ⊗k B) such that ΦP = H0(F ).

We wish to identify the kernels as objects of the derived category of an honest

noncommutative projective scheme. In general, one can only hope that kernels ob-

tained as above are objects of the derived category of a noncommutative (bi)projective

scheme. However, we have the following special case in which we can collapse the

Z2-grading to a Z-grading.
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Corollary 5.4.3. Let A and B be a delightful couple of connected graded k-algebras

with k a field that are both generated in degree one. Assume that there exists an

equivalence

f : D(QGrA)→ D(QGrB).

Then there exists an object P ∈ D(QGrAop ×k B) that induces an equivalence

D(QGrA) D(QGrB)

M πB
(
Vdg(P )⊗L RωAM

)
Proof. The equivalence V of Theorem 3.6.3 extends naturally to a quasi-equivalence

Vdg : h-inj (QGrS)→ h-inj (QGrT ) .

Now we can choose P such that Vdg(P ) is homotopy equivalent to the kernel obtained

by applying Corollary 5.4.2, so the desired equivalence is ΦVdg(P ).
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